Intuitionistic propositional logic is polynomial-space complete

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intuitionistic Propositional Logic is Polynomial-Space Complete

Abatraet. It is the purpose of this note to show that the question of whether a given propositional formula is intuitionistically valid (in Brouwer’s sense, in Kripke’s sense, or just provable by Heyting’s rules, see Kreisel[7]) is p-space complete (see Stockmeyer [14]). Our result has the following consequences: (a) There is a simple (i.e. polynomial time) translation of intuitionistic proposi...

متن کامل

A polynomial time complete disjunction property in intuitionistic propositional logic

We extend the polynomial time algorithms due to Buss and Mints[2] and Ferrari, Fiorentini and Fiorino[4] to yield a polynomial time complete disjunction property in intuitionistic propositional logic. The disjunction property, DP of the intuitionistic propositional logic Ip says that if a disjunction α0 ∨ α1 is derivable intuitionistically, then so is αi for an i. This property follows from cut...

متن کامل

On the polynomial-space completeness of intuitionistic propositional logic

We present an alternative, purely semantical and relatively simple, proof of the Statman’s result that both intuitionistic propositional logic and its implicational fragment are PSPACE -complete.

متن کامل

Semantics of intuitionistic propositional logic

Intuitionistic logic is a weakening of classical logic by omitting, most prominently, the principle of excluded middle and the reductio ad absurdum rule. As a consequence, this logic has a wider range of semantical interpretations. The motivating semantics is the so called Brouwer-Heyting-Kolmogorov interpretation of logic. The propositions A,B,C, . . . are regarded as problems or tasks to be s...

متن کامل

Bisimulation and Propositional Intuitionistic Logic

The Brouwer-Heyting-Kolmogorov interpretation of intuition-istic logic suggests that p q can be interpreted as a computation that given a proof of p constructs a proof of q. Dually, we show that every nite canonical model of q contains a nite canonical model of p. If q and p are interderivable, their canonical models contain each other. Using this insight, we are able to characterize validity i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1979

ISSN: 0304-3975

DOI: 10.1016/0304-3975(79)90006-9